DOI: 10.33915/etd.4022
|View full text |Cite
|
Sign up to set email alerts
|

Security Bug Report Classification using Feature Selection, Clustering, and Deep Learning

Abstract: As the numbers of software vulnerabilities and cybersecurity threats increase, it is becoming more difficult and time consuming to classify bug reports manually. This thesis is focused on exploring techniques that have potential to improve the performance of automated classification of software bug reports as security or non-security related. Using supervised learning, feature selection was used to engineer new feature vectors to be used in machine learning. Feature selection changes the vocabulary used by sel… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 9 publications
0
0
0
Order By: Relevance