Modern technology enhancements have been used worldwide to fulfill the requirements of the industrial sector, especially in supervisory control and data acquisition (SCADA) systems as a part of industrial control systems (ICS). SCADA systems have gained popularity in industrial automations due to technology enhancements and connectivity with modern computer networks and/or protocols. The procurement of new technologies has made SCADA systems important and helpful to processing in oil lines, water treatment plants, and electricity generation and control stations. On the other hand, these systems have vulnerabilities like other traditional computer networks (or systems), especially when interconnected with open platforms. Many international organizations and researchers have proposed and deployed solutions for SCADA security enhancement, but most of these have been based on node-to-node security, without emphasizing critical sessions that are linked directly with industrial processing and automation. This study concerns SCADA security measures related to critical processing with specified sessions of automated polling, analyzing cryptography mechanisms and deploying the appropriate explicit inclusive security solution in a distributed network protocol version 3 (DNP3) stack, as part of a SCADA system. The bytes flow through the DNP3 stack with security
OPEN ACCESSSymmetry 2015, 7 1946 computational bytes within specified critical intervals defined for polling. We took critical processing knowledge into account when designing a SCADA/DNP3 testbed and deploying a cryptography solution that did not affect communications.