Large salt lakes are long-term witnesses to climatic conditions and land use in their basins. The majority are experiencing a drastic drop in water levels due to climate change and human impact. Endoreic Lake Urmia (NW Iran), the sixth largest salt lake worldwide, is a striking example of this decline. Quantification of the relative contributions of natural variability and human impact on the lake's water supply is therefore essential. Here we present isotopic and radiocarbon analyses of surface and groundwater from the Shahr Chay River catchment, entering Lake Urmia on its western shore, and radiocarbon dating of a sedimentary core. Lake Urmia behaves like a large saltwater wedge almost entirely fed by the river and shallow groundwater. This leads to trapping of residual brines and formation of CH4 and secondary CO2 greenhouse gases, impacting sediment geochemical records and corresponding time scales for paleoenvironmental reconstructions. We conclude that (1) salt lakes functioning like a saline wedge, allowing organic matter oxidation, could contribute to increasing methane sources or reducing carbon sinks globally, and (2) endoreic basins worldwide need to be monitored before aridification-related salinization leads to the establishment of a saline wedge precluding any possibility of return to an equilibrium state.