2019
DOI: 10.1016/j.ijresmar.2019.01.010
|View full text |Cite
|
Sign up to set email alerts
|

Seeing the wood for the trees: How machine learning can help firms in identifying relevant electronic word-of-mouth in social media

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

1
61
0
4

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
3

Relationship

0
10

Authors

Journals

citations
Cited by 118 publications
(66 citation statements)
references
References 47 publications
1
61
0
4
Order By: Relevance
“…Computational approaches can help here. For example, Vermeer et al (2019) used a supervised machine-learning algorithm to identify social media messages that warrant a response from businesses. They show that response-worthy messages are not always negative, which challenges the common practice of focusing more on negative consumer comments.…”
Section: Understanding and Responding To Usersmentioning
confidence: 99%
“…Computational approaches can help here. For example, Vermeer et al (2019) used a supervised machine-learning algorithm to identify social media messages that warrant a response from businesses. They show that response-worthy messages are not always negative, which challenges the common practice of focusing more on negative consumer comments.…”
Section: Understanding and Responding To Usersmentioning
confidence: 99%
“…Pesquisas na literatura revelaram que há poucos trabalhos que realizam a análise e extração de conhecimento de eWoM expressas em plataformas de reclamações online. Encontra-se o uso massificado de diversas plataformas de eWoM como fonte de dados para a geração de conhecimento, tais como: Facebook (Bahtar & Muda, 2016;Kim & Johnson, 2016;Liu, Li, Ji, North, & Yang, 2017;Vermeer, Araujo, Bernritter, & van Noort, 2019), Twitter (Chakraborty et al, 2017;Einwiller & Steilen, 2015;Vermeer et al, 2019) e reviews em loja de aplicativo (Ali, Joorabchi, & Mesbah, 2017;McIlroy, Ali, Khalid, & E. Hassan, 2016;Vu, Nguyen, Pham, & Nguyen, 2016).…”
Section: Introductionunclassified
“…Na literatura, há diversos estudos que utilizam dados de revisões e de reclamações online obtidos de diferentes plataformas de mídias sociais tais como Twitter, Facebook, TripAdvisor, Booking.com e entre outras [Bahtar and Muda 2016, Silva et al 2017, Xiang et al 2017, Vermeer et al 2019. Geralmente, estes estudos utilizam em suas análises um conjunto amostral de dados para extrair informações que possibilitam a detecção, descrição ou previsão de padrões que influenciam na tomada de decisões teóricas e/ou práticas.…”
Section: Introductionunclassified