With millions of people enduring traumatic or surgical wounds each year, establishing innovative approaches for proper wound closure has long been considered imperative research and clinical objective. The massive demand for improving wound-closing procedures and the disadvantages of conventional closure techniques foreshadow the robust investigation in the field and inspire researchers to combine more advanced technologies to develop clinically feasible approaches. Tissue adhesives, liquid monomers that can transform into a polymer to form tissue bonds when exposed to the skin, have long been considered prominent candidates as sealants and non-invasive wound-closure devices [1]. Despite being promising therapeutics, tissue adhesives have potential disadvantages, including cell toxicity, weak tissue-adhesive strength, and the possibility of inflammation [2]. In response to these deficiencies, considerable efforts have been made to explore the usage of nanotechnology in promoting tissue adhesives' properties.Nanostructured biomaterials, such as nanoparticles (NPs), nanofibers, and nanocomposites, possess unique properties mainly endowed by their specific surface area and sizes [3,4]. With the ability to penetrate biological membranes and barriers, they can promote wound healing by mimicking the extracellular matrix's characteristics at the nanoscale [5], enabling interactions between material and biological surfaces [6], and functioning as a delivery system combined with regenerative medicine [7,8]. Current studies demonstrate nanotechnology applications in wound healing through two strategies: nanomaterials as drugs with intrinsic therapeutic abilities to assist wound healing and nanomaterial-based delivery systems for therapeutic agents [3].Recently, researchers have investigated the potential of NPs as promising candidates for addressing wound treatment and have managed to discover enhanced nanotechnology-based adhesive hydrogels. In a recent review, we explored the literature concerning the progress in using nanotechnology in tissue adhesives [9]. The article focused