This paper presents a novel approach to the problem of time periodization, which involves dividing the time span of a complex dynamic phenomenon into periods that enclose different relatively stable states or development trends. The challenge lies in finding such a division of the time that takes into account diverse behaviours of multiple components of the phenomenon while being simple and easy to interpret. Despite the importance of this problem, it has not received sufficient attention in the fields of visual analytics and data science. We use a real‐world example from aviation and an additional usage scenario on analysing mobility trends during the COVID‐19 pandemic to develop and test an analytical workflow that combines computational and interactive visual techniques. We highlight the differences between the two cases and show how they affect the use of different techniques. Through our investigation of possible variations in the time periodization problem, we discuss the potential of our approach to be used in various applications. Our contributions include defining and investigating an earlier neglected problem type, developing a practical and reproducible approach to solving problems of this type, and uncovering potential for formalization and development of computational methods.