Electrical Resistance Tomography (ERT) has been widely used for detecting cementitious materials with one type of flaw. To extend the ERT for multi-flaws detection in a larger concrete plate, this paper develops a subdomain integration method. The adjacent driver pattern and absolute imaging scheme of ERT are adopted to reconstruct the inner electrical conductivity field of a concrete specimen which contains three different inclusions, namely, a copper bar, a piece of plexiglass, and a drop of saline solution. The feasibility of subdomain integration method for multiple flaws detection in cementitious materials is analyzed by theoretical analyses of the equipotential line density and the image quality evaluation indicator. The concrete specimen is divided into four, nine, and 16 subdomains for detection. The image reconstruction results obtained by the subdomain detection method are compared with each other, and with the results of a global detection method. Results indicate that the effective area of subdomain largely relies on the density of equipotential lines, as well as the measurement errors. Subdomain integration method is effective in detecting a relatively large cementitious component with multi-flaws.