Anais Do Simpósio Brasileiro De Computação Aplicada À Saúde (SBCAS) 2018
DOI: 10.5753/sbcas.2018.3683
|View full text |Cite
|
Sign up to set email alerts
|

Segmentação Automática da Próstata em Imagens de Ressonância Magnética utilizando Redes Neurais Convolucionais e Mapa Probabilístico

Abstract: O câncer de próstata é o segundo tipo de câncer mais comum entre os homens e atualmente tem crescido a utilização de exames de imagens da próstata para a prevenção, diagnóstico e tratamento. A segmentação manual da próstata é extremamente demorada e propensa à variabilidade entre diferentes especialistas, o que sugere o desenvolvimento de técnicas automáticas para a segmentação da próstata. Neste trabalho, propomos um método totalmente automático para a segmentação da próstata a partir de imagens de ressonânci… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 11 publications
0
1
0
Order By: Relevance
“…Although applicable in several areas, such as speech processing and natural language [23], CNNs are widely used in image and video processing. Among the relevant productions, it is possible to cite the one by Ferreira [24], who used CNNs to detect weeds in drone images of soybean crops; or Pereira et al [25], who developed a CNN architecture capable of segmenting brain tumors on MRIs (Magnetic Resonance Images) with enough scores to beat the Brain Tumor Segmentation Challenge 2013. Based on the work of Long et al [22], Badrinarayanan et al [5] developed the CNN SegNet.…”
Section: Segnetmentioning
confidence: 99%
“…Although applicable in several areas, such as speech processing and natural language [23], CNNs are widely used in image and video processing. Among the relevant productions, it is possible to cite the one by Ferreira [24], who used CNNs to detect weeds in drone images of soybean crops; or Pereira et al [25], who developed a CNN architecture capable of segmenting brain tumors on MRIs (Magnetic Resonance Images) with enough scores to beat the Brain Tumor Segmentation Challenge 2013. Based on the work of Long et al [22], Badrinarayanan et al [5] developed the CNN SegNet.…”
Section: Segnetmentioning
confidence: 99%