2022
DOI: 10.53106/160792642022112306022
|View full text |Cite
|
Sign up to set email alerts
|

Segmentation-based Decision Networks for Steel Surface Defect Detection

Abstract: <p>With the advent of the Industrial 4.0 era, deep learning has been continuously applied to the task of surface defect detection, and effective progress has been made. However, the limited number of training samples and high labelling costs are considerable obstacles to the vigorous development of this task. Thus, we explore the use of different numbers of labels with various accuracies during training to achieve the maximum detection accuracy with the lowest cost. Our proposed method includes improved … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
references
References 42 publications
0
0
0
Order By: Relevance