Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Bronchial airway structure and morphology identification is very useful for analysis of many lung diseases. Since, the human tracheo-bronchial tree is a dyadic non-symmetric branching network which is very complex and its manual tracing is quite tedious and unwieldy. Moreover, automatic detection techniques for airway are quite challenging. This is due to its complexity and fading off the airway intensity because of the smaller asynchronous branching and noise in the image reconstruction. In this paper, an unsupervised approach for segmentation of localized airway has been proposed after segmenting the lung region. Firstly, airways are segmented out by using 3D region growing techniques with intensity constrained to prevent leakages. This results in limited segmentation of airways due to partial volume effect and leakage risk. Further, deeper bronchial branches are segmented by applying adaptive morphological techniques on 3D segmented lungs. Then, these two results are combined followed by 3D region growing to get complete segmentation of airway. The proposed technique is tested on Exact’09 20 test cases and evaluated by Exact’09 team. The performance of the proposed approach is quite reliable in segmenting distal branches with reasonable leakages. The advantage of this scheme is that it is easy to implement, fully automated, and time efficient.
Bronchial airway structure and morphology identification is very useful for analysis of many lung diseases. Since, the human tracheo-bronchial tree is a dyadic non-symmetric branching network which is very complex and its manual tracing is quite tedious and unwieldy. Moreover, automatic detection techniques for airway are quite challenging. This is due to its complexity and fading off the airway intensity because of the smaller asynchronous branching and noise in the image reconstruction. In this paper, an unsupervised approach for segmentation of localized airway has been proposed after segmenting the lung region. Firstly, airways are segmented out by using 3D region growing techniques with intensity constrained to prevent leakages. This results in limited segmentation of airways due to partial volume effect and leakage risk. Further, deeper bronchial branches are segmented by applying adaptive morphological techniques on 3D segmented lungs. Then, these two results are combined followed by 3D region growing to get complete segmentation of airway. The proposed technique is tested on Exact’09 20 test cases and evaluated by Exact’09 team. The performance of the proposed approach is quite reliable in segmenting distal branches with reasonable leakages. The advantage of this scheme is that it is easy to implement, fully automated, and time efficient.
In recent years, bio-medical image segmentation is established itself as base for image analysis. This article proposes a new method in developing a robust wavelet based medical image fusion technique for image segmentation. A GLCM (Gray Level Co-occurrence Matrix) based statistical method is used to extracts the texture features of the image decomposed at single level and the image is segmented based on region growing method. The combination of these two along with fusion technique gives a new segmented image. The results indicate the efficiency of the proposed method in segmenting the both normal cell images as well as darker cell images.
Background: Airway segmentation is a way to quantify the diagnosis of pulmonary diseases, including chronic obstructive problems and bronchiectasis. Manual analysis by radiologists is a challenging task due to the complex airway structure. Additionally, tree-like patterns, varied shapes, sizes, and intensity make the manual airway segmentation task more complex. Deeper airways are even more difficult to segment as their intensity starts matching the lung parenchyma as the diameter of the airway cross-section gets reduced. Objective: Many earlier works have proposed different deep learning networks for airway segmentation but were unable to achieve the desired performance; hence the task of airway segmentation still possesses challenges in this field. Method: This work proposes a convolutional neural network based on deep U-Net architecture and employs an attention block technique for airway segmentation. The attention mechanism aids in the extraction of the complicated and multi-sized airways found in the lung region, hence increasing the efficiency of the U-Net architecture. Results: The model has been validated using VESSEL12 and EXACT09 datasets, individually and combined, with and without trachea images. The best DSC scores on EXACT09 and VESSEL12 datasets are 95.21% and 95.80%, respectively. The performance on both datasets combined gave a DSC score of 94.1% showing that the overall performance of the proposed methodology is quite satisfactory. The generalizability of the model is also confirmed using k-fold cross-validation. The comparison of the proposed model to existing research on airway segmentation founds that it achieved competitive results. Conclusion: The use of an attention unit in the proposed model highlights the relevant information and reduces the irrelevant features, which helps to improve the performance and saves time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.