2022
DOI: 10.1016/j.matpr.2022.05.189
|View full text |Cite
|
Sign up to set email alerts
|

Segmentation of Hard exudates for the detection of Diabetic Retinopathy with RNN based sematic features using fundus images

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(4 citation statements)
references
References 19 publications
0
2
0
2
Order By: Relevance
“…For instance, figure 5 shows the three rows, where input image in first row, ground truth image in second row and finally, segmented images using proposed model in third row. [22,27], RNN [39], CNN [41], GAN [42], YOLO [26,27], CSO [31] and SSA [31] are all tested with these two datasets and results are mentioned in the following tables.…”
Section: Segmentation Analysismentioning
confidence: 99%
“…For instance, figure 5 shows the three rows, where input image in first row, ground truth image in second row and finally, segmented images using proposed model in third row. [22,27], RNN [39], CNN [41], GAN [42], YOLO [26,27], CSO [31] and SSA [31] are all tested with these two datasets and results are mentioned in the following tables.…”
Section: Segmentation Analysismentioning
confidence: 99%
“…It uses weighted CLAHE, Gaussian blur and Ben Grahams fraction maxpooling for preprocessing. Sivapriya et al [75] have proposed a Recurrent Neural Network (RNN) to identify hard EXs for the detection of DR. The model uses limited data of 400 images from the MESSIDOR dataset and performs various preprocessing operations on them without any significant changes in the architecture of the RNN.…”
Section: The Proposed Model Identifies High Bias and High Variance Du...mentioning
confidence: 99%
“…Si hacemos la comparativa de los resultados obtenido por [26] indica que usando árbol de decisión tiene una precisión de 87.5% frente a la presente investigación usando una estrategia de datos aplicando el algoritmo Sobel, orientación, medfild2 y a esto redimensionarlo para obtener su representativo en una dimensión pequeña tal como se aprecia en la Fig 3 . A estos nuevos datos vienen a ser los patrones de entrada a la red neuronal SOM obteniendo un 93.7% de precisión. Teniendo en cuenta que los casos usan imágenes que tienen retinopatía diabética, tal como la investigación de [23] que tuvo un 96.11% de certeza implicando una diferencia mayor de 2.41% de precisión frente a la presente investigación, por tanto se requiere unos ajustes para alcanzar o superar esta precisión.…”
Section: Conclusionesunclassified