Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The menisci within the knee are essential for various anatomical functions, including load‐bearing, joint stability, cartilage protection, shock absorption, and lubrication. Magnetic resonance imaging (MRI) provides highly detailed images of internal organs and soft tissues, which are indispensable for physicians and radiologists assessing the meniscus. Given the multitude of images in each MRI sequence and diverse MRI data, the segmentation of the meniscus presents considerable challenges through image processing methods. The region‐specific characteristics of the meniscus can vary from one image to another within the sequence. Consequently, achieving automatic and accurate segmentation of meniscus in knee MRI images is a crucial step in meniscus analysis. This paper introduces the “UNet with depthwise residual network” (DR‐UNet), a depthwise convolutional neural network, designed specifically for meniscus segmentation in MRI images. The proposed architecture significantly improves the accuracy of meniscus segmentation compared to different segmentation networks. The training and testing phases utilized fat suppression turbo‐spin‐echo (FS TSE) MRI sequences collected from 100 distinct knee joints using a Siemens 3 Tesla MRI machine. Additionally, we employed data augmentation techniques to expand the dataset strategically, addressing the challenge of a substantial training dataset requirement. The DR‐UNet model demonstrated impressive meniscus segmentation performance, achieving a Dice similarity coefficient range of 0.743–0.9646 and a Jaccard index range of 0.653–0.869, thereby showcasing its advanced segmentation capabilities.
The menisci within the knee are essential for various anatomical functions, including load‐bearing, joint stability, cartilage protection, shock absorption, and lubrication. Magnetic resonance imaging (MRI) provides highly detailed images of internal organs and soft tissues, which are indispensable for physicians and radiologists assessing the meniscus. Given the multitude of images in each MRI sequence and diverse MRI data, the segmentation of the meniscus presents considerable challenges through image processing methods. The region‐specific characteristics of the meniscus can vary from one image to another within the sequence. Consequently, achieving automatic and accurate segmentation of meniscus in knee MRI images is a crucial step in meniscus analysis. This paper introduces the “UNet with depthwise residual network” (DR‐UNet), a depthwise convolutional neural network, designed specifically for meniscus segmentation in MRI images. The proposed architecture significantly improves the accuracy of meniscus segmentation compared to different segmentation networks. The training and testing phases utilized fat suppression turbo‐spin‐echo (FS TSE) MRI sequences collected from 100 distinct knee joints using a Siemens 3 Tesla MRI machine. Additionally, we employed data augmentation techniques to expand the dataset strategically, addressing the challenge of a substantial training dataset requirement. The DR‐UNet model demonstrated impressive meniscus segmentation performance, achieving a Dice similarity coefficient range of 0.743–0.9646 and a Jaccard index range of 0.653–0.869, thereby showcasing its advanced segmentation capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.