2023
DOI: 10.30574/wjbphs.2023.13.2.0159
|View full text |Cite
|
Sign up to set email alerts
|

Segmentation White Blood Cells by Machine Learning Algorithms

Abstract: Blood and its elements have a vital position in human life and are the best indicator for deciding many pathological states. Specifically, white blood cells are of great significance for diagnosing hematological disorders. In this analysis, 350 microscopic blood smudge images have experimented with six machine learning algorithms for the sort of white blood cells, and their renditions have resembled. Thirty-five distinct geometric and statistical (consistency) features have been pulled from blood pictures for … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 16 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?