2022
DOI: 10.48550/arxiv.2205.02847
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Segmentation with Super Images: A New 2D Perspective on 3D Medical Image Analysis

Abstract: Deep learning is showing an increasing number of audience in medical imaging research. In the segmentation task of medical images, we oftentimes rely on volumetric data, and thus require the use of 3D architectures which are praised for their ability to capture more features from the depth dimension. Yet, these architectures are generally more ineffective in time and compute compared to their 2D counterpart on account of 3D convolutions, max pooling, up-convolutions, and other operations used in these networks… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?