2001
DOI: 10.1007/s002090100262
|View full text |Cite
|
Sign up to set email alerts
|

Segre varieties and Lie symmetries

Abstract: We show that biholomorphic automorphisms of a real analytic hypersurface in C n+1 can be considered as (pointwise) Lie symmetries of a holomorphic completely overdetermined involutive second order PDE system defining its Segre family. Using the classical S.Lie method we obtain a complete description of infinitesimal symmetries of such a system and give a new proof of some well known results of CR geometry.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
44
0
4

Year Published

2003
2003
2020
2020

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 39 publications
(49 citation statements)
references
References 13 publications
1
44
0
4
Order By: Relevance
“…To every Levi nondegenerate real hypersurface M ⊂ C N we can associate a system of second order holomorphic PDEs with 1 dependent and N − 1 independent variables, using the Segre family of the hypersurface. This remarkable construction goes back to E. Cartan [10], [9] and Segre [36] (see also [42]), and was recently revisited in [38], [39], [33], [17], [27], [28], [25] (see also references therein). We describe this procedure in the case N = 2 relevant for our purposes.…”
Section: 2mentioning
confidence: 91%
See 1 more Smart Citation
“…To every Levi nondegenerate real hypersurface M ⊂ C N we can associate a system of second order holomorphic PDEs with 1 dependent and N − 1 independent variables, using the Segre family of the hypersurface. This remarkable construction goes back to E. Cartan [10], [9] and Segre [36] (see also [42]), and was recently revisited in [38], [39], [33], [17], [27], [28], [25] (see also references therein). We describe this procedure in the case N = 2 relevant for our purposes.…”
Section: 2mentioning
confidence: 91%
“…The "mediator" between a CR-manifold and the associated PDE system is the Segre family of the CR-manifold. Unlike the nondegenerate setting in the cited work [9,36,38,39], the CR -DS technique deals systematically with the degenerate setting, providing sort of a dictionary between CR-geometry and Dynamical Systems. We refer to Section 2 for further details and references and briefly mention here that, using the CR -DS technique, we can interpret infinitesimal CR-automorphisms as Lie symmetries of the associated dynamical systems (singular differential equations).…”
mentioning
confidence: 99%
“…-Leséquations de structure (3.30) nous permettent d'écrire la relation d 2 ψ = 0 sous la forme : [17], [18], la dimension réelle du groupe de Lie Aut(H) est inférieure oú egaleà la dimension complexe du groupe de symétrie de (S). A l'aide du théorème 5.1, nous retrouvons donc le faitétabli dans [5] que les seules hypersurfaces réelles analytiques Levi non dégénérées qui admettent un groupe d'automorphismes de dimension n 2 + 4n + 3 sont celles auxquelles on peut associer le système (S 0 ), c'està direà biholomorphisme près, les quadriques de C n+1 .…”
Section: ψ) Associéà Un Système D'équations Aux Dérivées Partielles (unclassified
“…Puis nous calculons les dérivées w zj z k dans lesquelles nous rempalçons ζ et ω par leurs expressions en fonction des variables z, w et w z k . Nous pouvons donc affirmer que ces variétés de Segre sont exactement les graphes des solutions d'un système (S) complète-ment intégrable au voisinage de l'origine [17], [18]. Observons que (S 0 ) est le système d'équations différentielles associé aux variétés de Segre des quadriques de C n+1 .…”
Section: Introductionunclassified
See 1 more Smart Citation