Quantitative indices of residential segregation have been with us for half a century, but suffer significant limitations. While useful for comparison among regions, summary indices fail to reveal spatial aspects of segregation. Such measures generally consider only the population mix within zones, not between them. Zone boundaries are treated as impenetrable barriers to interaction between population subgroups, so that measurement of segregation is constrained by the zoning system, which bears no necessary relation to interaction among population subgroups. A segregation measurement approach less constrained by the chosen zoning system, which enables visualization of segregation levels at the local scale and accounts for the spatial dimension of segregation, is required. We propose a kernel density estimation approach to model spatial aspects of segregation. This provides an explicitly geographical framework for modeling and visualizing local spatial segregation. The density estimation approach lends itself to development of an index of spatial segregation with the advantage of functional compatibility with the most widely used index of segregation (the dissimilarity index D). We provide a short review of the literature on measuring segregation, briefly describe the kernel density estimation method, and illustrate how the method can be used for measuring segregation. Examples using a simulated landscape and two empirical cases in Washington, DC and Philadelphia, PA are presented.