This article reviews a method for calculating an equilibrium interfacial phase diagram depicting regions of stability for different interface structures as function of temperature and chemical potentials. Density functional theory (DFT) is used for interfacial energies, Monte Carlo simulations together with cluster expansions based on DFT results for obtaining configurational free energies, and CALPHAD-type modeling for describing the thermodynamic properties of the adjoining bulk phases. An explicit case, vanadium doped cemented carbides, is chosen to illustrate the progress in the research field and the interfacial diagram, a complexion diagram, for the phase boundary WC(0001)/Co is constructed as function of temperature and chemical potentials.