The vulnerability of reinforced concrete (RC) structures against seismic events has prompted extensive research into retrofitting techniques aimed at enhancing their seismic performance. Among these, Fabric-Reinforced Cementitious Matrix (FRCM) systems have gained prominence as promising solutions for strengthening RC-columns. This study presents a comprehensive investigation into the seismic strengthening of RC columns using FRCM, combining experimental and numerical approaches to assess their effectiveness. The experimental phase of this research involved the fabrication of scaled RC-column specimens representing typical real-world conditions. These columns were subjected to a series of cyclic loading tests to simulate seismic forces. Multiple FRCM configurations, including different fiber types and dosages, were applied to these specimens. The experimental results revealed a substantial increase in the ductility, stiffness, and ultimate strength of the strengthened RC-columns, indicating the potential of FRCM systems as effective seismic retrofit solutions. In parallel, a numerical analysis was conducted using finite element modeling (FEM) to simulate the behavior of the strengthened RC-columns under seismic loading conditions. The FEM simulations were validated against the experimental data, demonstrating good agreement. This numerical investigation allowed for a more in-depth understanding of the stress distribution and deformation patterns within the strengthened columns, aiding in the optimization of FRCM reinforcement strategies. The integrated experimental and numerical investigation presented in this study contributes valuable insights into the seismic strengthening of RC-columns using FRCM systems. It provides a holistic understanding of their performance, including their enhanced load-carrying capacity, as well as improved ductility guiding the adoption of FRCM systems as a viable solution for mitigating seismic risk in existing RC-structures.