Precast concrete (PC) structures have many advantages, but their use in the construction of middle- to high-rise buildings is limited. The construction of PC structures requires skills in various operations such as transportation, assembly, lifting, and structural soundness. In particular, regarding the seismic design of PC structures, it is necessary to clearly evaluate whether they have the same structural performance and usability as integral RC (cast-in-place) structures. In this paper, an experimental study was conducted to investigate whether PC members can achieve a seismic performance equivalent to that of RC members in beam–column joints, which are representative moment-resisting frames. The main variables are the two types of structural systems (intermediate and special moment-resisting frames) and the design flexural strength ratio of the columns and beams. The experimental and analytical results showed that the seismic performance of the PC specimens was equivalent to that of the RC specimens in terms of strength, stiffness, energy dissipation, and strain distribution, except for the specimen with splice sleeve bond failure of the column reinforcement (poor filling of the internal mortar). In addition, the I series satisfied the present emulation evaluation criteria for special moment-resisting frames of PC structures, confirming the possibility of applying intermediate moment-resisting frames.