We have characterized a promising geothermal prospect using an integrated approach involving microseismic monitoring data, well logs, and 3D surface seismic data. We have used seismic as well as microseismic data along with well logs to better predict the reservoir properties to try and analyze the reservoir for improved mapping of natural and induced fractures. We used microseismic-derived velocity models for geomechanical modeling and combined these geomechanical attributes with seismic and log-derived attributes for improved fracture characterization of an unconventional reservoir. We have developed a workflow to integrate these data to generate rock property estimates and identification of fracture zones within the reservoir. Specifically, we introduce a new "meta-attribute" that we call the hybrid-fracture zone-identifier attribute (FZI). The FZI makes use of elastic properties derived from microseismic as well as log-derived properties within an artificial neural network framework. Temporal analysis of microseismic data can help us understand the changes in the elastic properties with reservoir development. We demonstrate the value of using passive seismic data as a fracture zone identification tool despite issues with data quality.