Seismic data are often undersampled owing to physical or financial limitations. However, complete and regularly sampled data are becoming increasingly critical in seismic processing. In this paper, we present an efficient two-dimensional (2D) seismic data reconstruction method that works on texture-based patches. It performs completion on a patch tensor, which folds texture-based patches into a tensor. Reconstruction is performed by reducing the rank using tensor completion algorithms. This approach differs from past methods, which proceed by unfolding matrices into columns and then applying common matrix completion approaches to deal with 2D seismic data reconstruction. Here, we first re-arrange the seismic data matrix into a third-order patch tensor, by stacking texture-based patches that are divided from seismic data. Then, the seismic data reconstruction problem is formulated into a low-rank tensor completion problem. This formulation avoids destroying the spatial structure, and better extracts the underlying useful information. The proposed method is efficient and gives an improved performance compared with traditional approaches. The effectiveness of our patch tensor-based framework is validated using two classical tensor completion algorithms, low-rank tensor completion (LRTC), and the parallel matrix factorization algorithm (TMac), on both synthetic and field data experiments.