In this paper, the seismic response of a five-story reinforced concrete (RC) frame system building is analysed through fragility analysis. The structure is designed in accordance with structural Eurocodes EN1990, EN1991, EN1992 and EN1998, as a high-ductility (DCH) system. For the analysis of the response of a structural system to earthquake actions, the methods of nonlinear static (NSA) and nonlinear dynamic analyses (NDA) are applied and, based on the obtained results, fragility curves are constructed using statistical methods. A relationship between the intensity measure (IM) and engineering demand parameters (EDPs) is needed in order to estimate a fragility curve. Fragility functions represent a possibility for different states of damage to occur in a certain structural systems at the observed value of the specified IM. Ten accelerograms, used in NDA, are selected and scaled, according to EN1998 provisions, for the chosen elastic response spectrum and referent PGA. Obtained results are used for the statistical analysis and construction of fragility curves. Structural damage state threshold parameters are determined based on the Park and Ang modified damage index methodology and provisions given in FEMA, HAZUS, VISION 2000 and EN codes. Comparative analysis of the structural damage probability for the analysed RC building, calculated using different methodologies to determine damage states, is applied. The fragility analysis results showed the difference between the probabilities of the damage states to occur when different calculation methods are used. This reflects on the assessment of vulnerability curves as well. The obtained results, calculated using different methods, are analysed using comparative analysis.