In the event of an earthquake, it is essential to accurately assess the seismic fragility of piping systems to ensure the continued safety of society. When evaluating the seismic fragility of a piping system, which is generally a secondary structural system, this should mainly be an integrated model that includes both the primary structural frames and the secondary ones, unlike the primary structural system of a building. Hence, the piping seismic fragility evaluation has an issue in that it takes considerable computational time because numerical analyses must be performed on a relatively complex model. Given this background, the purpose of this study is to propose an efficient piping seismic fragility analysis method by utilizing the existing seismic fragility analysis method and the Bayesian updating concept. In order to verify the validity of the proposed method, it was applied to a building–piping coupled structural system example, and its results were analyzed and compared with the results of the existing method in terms of accuracy and efficiency. As a result, the proposed method showed a similar accuracy compared with the existing method while significantly reducing the numerical cost of nonlinear seismic response analyses necessary for these results.