Liquid storage, particularly oil and petrochemical products which are considered hazardous liquid, are an important part of the oil industry. Thin-walled vertical cylindrical steel storage tanks are widely used in recent years. Due to high sensitivity of these structures in an earthquake and other external excitations may lead to catastrophic consequences. For instance, huge economic losses, environmental damages, and casualities, many studies have been done about these structures. past studies showed that liquid storage tanks, equipped with a floating roof, are potentially vulnerable while subjected to seismic loads and earthquake has been considered as one of the most destructive natural hazards. The reason is that such tanks are made of two separated parts (shell and roof) which each may have its own responses; sometimes causing resonance phenomenon and so that, roof movements, rooffluid interaction, roof-shell interaction, and also the way they are attached should still be investigated. Experimental tests of floating roof 's vertical fluctuation was performed in a full-scale reservoir tank and assessing of the results demonstrated that presence of a seal between floating roof and shell plate can significantly increase damping ratio in liquid sloshing and also suppress the roof`s vertical displacements. In other words, seal can control a floating roof and make it stop moving vertically over few cycles.