In this paper the results of 2D dynamic finite element analyses of a zoned earth dam are presented and discussed with the aim of detecting proper intensity measures able to describe the variation of the crest permanent settlement with the characteristics of the input ground motion. A large set of horizontal components of earthquake records has been selected and used as input motion considering both upstream and downstream directions. This allowed to explore the activation of plastic mechanisms in the dam embankment and the amplification of the horizontal accelerations. Starting from the analysis results, two original intensity measures, related to the amplitude, energy and frequency content of the input motion, have been detected and original empirical predictive formulas have also been derived to estimate the permanent crest settlement of the dam. The effectiveness of the proposed intensity measures and the reliability of the novel relationships between these intensity measures and earthquake‐induced permanent crest settlements have been checked against (i) numerical results of further dynamic analyses carried out for the same dam using additional sets of input motions, (ii) numerical results available in the literature for two other earth dams and (iii) field data relative to the crest settlements induced in four earth dams by two recent large earthquakes. The whole set of analysis results allowed defining an empirical equation that appears as a promising general predictive tool for the earthquake‐induced crest settlement of earth dams.