The dynamic response of an idealized layered rock slope with a single joint subjected to seismic loads is investigated using the three dimensional distinct element code in the present study. Based on the numerical modeling, the variations of the stresses of the blocks close to the joint and the deformation of the joint are discussed, and the progressive failure mechanism of the slope is analyzed. It is found that, with the increasing excitations, the tensile stresses and the areas of tension zones in the upper part of the slope near the joint have increased gradually. In addition, the normal displacement at the upper part of the joint also becomes larger and larger, which leads to the gradual split of the upper part of joint. Hence the contact area for blocks at both sides of the joint has decreased, which gradually results in the decrease of the cohesion of the joint. When the induced shear stress for the joint under the applied excitations exceeds its shear strength, the potential sliding blocks will slip along the joint. The results in this paper may provide references for the study on failure mechanism of complicated layered rock slopes subjected to dynamic loads.