Fuego volcano, Guatemala is a high (3,800 m) composite volcano that erupts gas-rich, high-Al basalt, often explosively. It spends many years in an essentially open vent condition, but this activity has not been extensively observed or recorded until now. The volcano towers above a region with several tens of thousands of people, so that patterns in its activity might have hazard mitigation applications. We conducted 2 years of continuous observations at Fuego (2005Fuego ( -2007 during which time the activity consisted of minor explosions, persistent degassing, paroxysmal eruptions, and lava flows. Radiant heat output from MODIS correlates well with observed changes in eruptive behavior, particularly during abrupt changes from passive lava effusion to paroxysmal eruptions. A short-period seismometer and two low-frequency microphones installed during the final 6 months of the study period recorded persistent volcanic tremor (1-3 Hz) and a variety of explosive eruptions. The remarkable correlation between seismic tremor, thermal output, and daily observational data defines a pattern of repeating eruptive behavior: 1) passive lava effusion and subordinate strombolian explosions, followed by 2) paroxysmal eruptions that produced sustained eruptive columns, long, rapidly emplaced lava flows, and block and ash flows, and finally 3) periods of discrete degassing explosions with no lava effusion. This study demonstrates the utility of lowcost observations and ground-based and satellite-based remote sensing for identifying changes in volcanic activity in remote regions of underdeveloped countries.