Electroconvulsive therapy (ECT) relies on the electrical induction of generalized seizures to treat major depressive disorder and other psychiatric illnesses. These planned procedures provide a clinically relevant model system for studying neurophysiologic characteristics of generalized seizures. We recently described novel central-positive complexes (CPCs), which were observed during ECT-induced seizures as generalized, high-amplitude waveforms with maximum positive voltage over the vertex. Here, we performed a systematic characterization of 6,928 CPC ictal waveforms recorded in 11 patients undergoing right unilateral (RUL) ECT. Analyses of high-density 65-electrode EEG recordings during these 50 seizures allowed evaluation of these CPCs across temporal, spatial, and spectral domains. Peak-amplitude CPC scalp topology was consistent across seizures, showing maximal positive polarity over the midline fronto-central region and maximal negative polarity over the suborbital regions. Total duration of CPCs positively correlated with the time required for return of responsiveness after ECT treatment (r = 0.39, p = 0.005). The rate of CPCs showed a frequency decline consistent with an exponential decay (median 0.032 (IQR 0.053) complexes/second). Gamma band (30-80 Hz) oscillations correlated with the peak amplitude of CPCs, which was also reproducible across seizures, with band power declining over time (r = -0.32, p < 10-7). The sources of these peak potentials were localized to the bilateral medial thalamus and cingulate cortical regions. Our findings demonstrated CPC characteristics that were invariant to participant, stimulus charge, time, and agent used to induce general anesthesia during the procedure. Consistent with ictal waveforms of other generalized epilepsy syndromes, CPCs showed topographic distribution over the fronto-central regions, predictable intra-seizure frequency decline, and correlation with gamma-range frequencies. Furthermore, source localization to the medial thalamus was consistent with underlying thalamocortical pathophysiology, as established in generalized epilepsy syndromes. The consistency and reproducibility of CPCs offers a new avenue for studying the dynamics of seizure activity and thalamocortical networks.