2016
DOI: 10.1161/strokeaha.115.010810
|View full text |Cite
|
Sign up to set email alerts
|

Seladin-1/DHCR24 Is Neuroprotective by Associating EAAT2 Glutamate Transporter to Lipid Rafts in Experimental Stroke

Abstract: Background and Purpose-3β-Hydroxysteroid-Δ24 reductase (DHCR24) or selective alzheimer disease indicator 1 (seladin-1), an enzyme of cholesterol biosynthetic pathway, has been implicated in neuroprotection, oxidative stress, and inflammation. However, its role in ischemic stroke remains unexplored. The aim of this study was to characterize the effect of seladin-1/DHCR24 using an experimental stroke model in mice. Methods-Dhcr24+/− and wild-type (WT) mice were subjected to permanent middle cerebral artery occlu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

2
9
0

Year Published

2017
2017
2020
2020

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 17 publications
(11 citation statements)
references
References 37 publications
2
9
0
Order By: Relevance
“…Finally, elucidation of the expression profile of TNFα, BDNF, HMOX1, and NQO1 did not reveal alterations in mice overexpressing DHCR24 as compared to control mice, suggesting that DHCR24 is able to locally mitigate the ischemia-induced damage in a mouse model of transient focal cerebral ischemia without significantly affecting the inflammatory, neurotrophic, or oxidative stress responses. Collectively, the findings in the present study are in line with a previous study showing that DHCR24 exerts cholesterol-dependent neuroprotection in an experimental stroke model in mice, in which DHCR24 was genetically downregulated [ 49 ]. More specifically, it was suggested that the underlying molecular mechanism of DHCR24 is linked to the maintenance of lipid raft integrity in astrocytes by assuring the EAAT2-mediated uptake of glutamate excess upon ischemic stress [ 49 ].…”
Section: Discussionsupporting
confidence: 92%
See 1 more Smart Citation
“…Finally, elucidation of the expression profile of TNFα, BDNF, HMOX1, and NQO1 did not reveal alterations in mice overexpressing DHCR24 as compared to control mice, suggesting that DHCR24 is able to locally mitigate the ischemia-induced damage in a mouse model of transient focal cerebral ischemia without significantly affecting the inflammatory, neurotrophic, or oxidative stress responses. Collectively, the findings in the present study are in line with a previous study showing that DHCR24 exerts cholesterol-dependent neuroprotection in an experimental stroke model in mice, in which DHCR24 was genetically downregulated [ 49 ]. More specifically, it was suggested that the underlying molecular mechanism of DHCR24 is linked to the maintenance of lipid raft integrity in astrocytes by assuring the EAAT2-mediated uptake of glutamate excess upon ischemic stress [ 49 ].…”
Section: Discussionsupporting
confidence: 92%
“…Collectively, the findings in the present study are in line with a previous study showing that DHCR24 exerts cholesterol-dependent neuroprotection in an experimental stroke model in mice, in which DHCR24 was genetically downregulated [ 49 ]. More specifically, it was suggested that the underlying molecular mechanism of DHCR24 is linked to the maintenance of lipid raft integrity in astrocytes by assuring the EAAT2-mediated uptake of glutamate excess upon ischemic stress [ 49 ]. This is an interesting mechanistic finding also in the context of the present study, as we observed that the number of astrocytes significantly increased after the addition of BV2 microglial cells to the neuronal cultures before the induction of neuroinflammation.…”
Section: Discussionsupporting
confidence: 92%
“…The rare psychiatric illness-associated p.Val304Ile is localized between the PAS domains of NPAS3 and has been shown to be associated with aggregation, further, it can be hypothesized to affect protein interactivity and function (Fig. 1 a, [ 40 ]). Although our assays were not designed to assess protein aggregation, we did not observe alterations in expression, localization, deficits in interactivity with ARNT or transactivation function due to this variant in our assays (Figs.…”
Section: Resultsmentioning
confidence: 99%
“…There are also several examples where brain inflammation, in which p38MAPK has a preponderant role, has been associated to the loss of neuronal cholesterol that occurs both in conditions of acute (e.g., stroke) and chronic (aging) inflammation (21, 22). Therefore, we decided to investigate the relationship between p38MAPK increase and neuronal cholesterol loss.…”
Section: Resultsmentioning
confidence: 99%