Infections caused by Mycobacterium abscessus are increasing in prevalence in cystic fibrosis patients. This opportunistic pathogen′s intrinsic resistance to most antibiotics has perpetuated an urgent demand for new, more effective therapeutic interventions. Here we report a prospective advance in the treatment of M. abscessus infection; increasing the susceptibility of the organism to amoxicillin, by repurposing the β-lactamase inhibitor, relebactam, in combination with the front line M. abscessus drug imipenem. We establish by multiple in vitro methods that this combination works synergistically to inhibit M. abscessus. We also show the direct competitive inhibition of the M. abscessus β-lactamase, Bla Mab , using a novel assay, which is validated kinetically using the nitrocefin reporter assay and in silico binding studies. Furthermore, we reverse the susceptibility by overexpressing Bla Mab in M. abscessus, demonstrating relebactam-Bla Mab target engagement. Finally, we highlight the in vitro efficacy of this combination against a panel of M. abscessus clinical isolates, revealing the therapeutic potential of the amoxicillin-imipenem-relebactam combination. Mycobacterium abscessus is a rapidly growing, non-tuberculous mycobacteria (NTM) and increasingly prevalent opportunistic human pathogen. It is capable of causing pulmonary infections in patients with structural lung disorders such as cystic fibrosis (CF) and bronchiectasis as well as skin and soft tissue infections (SSTIs) in humans 1-6. However, monitoring the incidence of M. abscessus infection is difficult, mainly due to incorrect or non-specific species identification (i.e. isolates being referred to as M. chelonae/abscessus group or simply nontuberculous mycobacteria) obscuring its true prevalence, which is estimated to be much higher than currently thought 7,8. As with other NTMs, M. abscessus is resistant to the frontline antibiotics used for tuberculosis treatment; rifampicin, ethambutol, pyrazinamide and isoniazid 9-12. Despite reports that novel drugs developed to treat tuberculosis, such as bedaquiline and rifabutin may have some efficacy against M. abscessus, the paucity of available and potential treatments for this disease remains clear 13,14. Infection with M. abscessus is treated with a combination therapy of amikacin, tigecycline and imipenem, supplemented with oral clarithromycin or azithromycin, if the patient's isolate is macrolide susceptible, for 1 month. This is followed by a 12-month continuation phase comprising of nebulised amikacin, and a combination of clofazimine, linezolid, minocycline, moxifloxacin or co-trimoxaole, once the patient′s isolate has been susceptibility tested 15,16. The ubiquitous environmental nature of M. abscessus may go some way to explaining the high levels of intrinsic drug resistance to most major classes of antibiotic that is observed clinically 17. As a consequence of this, the efficacy of the current drug regime is poor and often does not successfully treat M. abscessus infections 16. M. abscessus expr...