2023
DOI: 10.1017/eds.2023.21
|View full text |Cite
|
Sign up to set email alerts
|

Selecting robust features for machine-learning applications using multidata causal discovery

Abstract: Robust feature selection is vital for creating reliable and interpretable machine-learning (ML) models. When designing statistical prediction models in cases where domain knowledge is limited and underlying interactions are unknown, choosing the optimal set of features is often difficult. To mitigate this issue, we introduce a multidata (M) causal feature selection approach that simultaneously processes an ensemble of time series datasets and produces a single set of causal drivers. This approach uses the caus… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 43 publications
0
0
0
Order By: Relevance