The mechanisms by which cancer evolves and persists in natural systems have been difficult to ascertain. In the Xiphophorus melanoma model, a functional oncogene (Xiphophorus melanoma receptor kinase Xmrk) has been maintained for several million years despite being deleterious and in an extremely unstable genomic region. Melanomas in Xiphophorus spp. fishes (platyfishes and swordtails) have been investigated since the 1920s, and, yet, positive selection that could explain the maintenance of Xmrk has not been found. Here, we show that Xiphophorus cortezi females from two populations prefer males with the spotted caudal (Sc) melanin pattern, which is associated with the presence of the Xmrk oncogene and serves as the site of melanoma formation within this species. Moreover, X. cortezi females prefer males with an enhanced Sc to males with a reduced Sc pattern. RT-PCR analysis confirms tissue-specific Xmrk expression within the Sc pattern in X. cortezi. Because of the association of Xmrk with the Sc pigment pattern and the fact that melanoma formation augments this visual signal, sexual selection appears to be maintaining this oncogene because of a mating preference for Sc, as well as the exaggeration of this male trait. At the individual level, decreases in viability and fecundity because of Xmrk and subsequent melanoma formation may be mitigated via increases in mate acquisition. At the population level, maintenance of this oncogene appears to be under frequency dependent selection, as we detected female preference for males without Sc in a third population that had higher frequencies of Sc in females.cancer ͉ evolution ͉ sexual selection ͉ Xiphophorus ͉ Xmrk