Friction welding is now well established as one of the most economical and highly productive methods in joining similar and dissimilar metals. It is widely used in automotive and aerospace industrial applications. Friction welding is often the only viable alternative in this field to overcome the difficulties encountered in joining the materials with widely varying physical characteristics. This process employs a machine that is designed to convert mechanical energy into heat at the joint to weld using relative movement between workpieces, without the use of electrical energy or heat from other sources. This review deals with the fundamental understanding of the process. The focus is on the mechanism of friction welding, types of relative motions of the process, influence of parameters, heat generation in the process, understanding the deformation, microstructure and the properties of similar and dissimilar welded materials.