A complex interaction between the retroviral envelope glycoproteins and a specific cell surface protein initiates viral entry into cells. The avian leukosis-sarcoma virus (ALV) group of retroviruses provides a useful experimental system for studying the retroviral entry process and the evolution of receptor usage. In this Retroviruses share a common overall strategy for entry into cells (for recent reviews, see references 26 and 40). The retroviral envelope glycoproteins are initially synthesized as a polyprotein precursor that is subsequently processed into two glycoproteins: the surface glycoprotein (SU), which contains the major domains that interact with the host receptor, and the transmembrane glycoprotein (TM), which anchors SU to the membrane and is directly involved in the fusion of viral and host membranes. The entry process is initiated by a complex interaction between SU and a specific cell surface protein that acts as a receptor, involving multiple, noncontiguous determinants in both proteins that specify receptor choice and binding affinity. Only a proper interaction triggers a conformational change in the structure of the viral glycoproteins which unlocks the fusion peptide located in TM. The exposed fusion peptide interacts with the target cell membrane, initiating a multistep process leading to fusion of the viral and cellular membranes and delivery of a subviral particle into the cell. Despite the complexity of the initial viral SU-cellular receptor interaction, retroviruses have the ability to evolve the structure of their envelope glycoproteins so that they can use a different cellular protein as a receptor (at times a protein that has no obvious homology to the original receptor) and retain efficient entry functions.The avian leukosis-sarcoma virus (ALV) group of retroviruses provides a useful experimental system for studying the initial interactions of retroviral entry and the evolution of receptor usage. ALV envelope subgroups A through E [ALV(A) through ALV(E)] are highly related, suggesting that these viruses have evolved from a common viral ancestor to use distinct cellular proteins as receptors in order to gain entry into chicken cells, presumably in response to the development of host resistance to viral entry. ALV(A) to ALV(E) SU glycoproteins are almost identical except for five hypervariable regions designated vr1, vr2, hr1, hr2, and vr3 ( Fig. 1) (6,7,13). Past analyses have suggested that the principal receptor interaction determinants are contained in the hr1 and hr2 domains of ALV SU, with vr3 playing a role in the specificity of receptor recognition but not in receptor binding affinity (14,36,37). The vr1 and vr2 hypervariable regions did not appear to be essential for receptor specificity or binding affinity.Five cell surface proteins have been identified as ALV receptors. The two subgroup A receptors, quail Tva and the chicken Tva homologue, are related to the low-density lipoprotein receptor family (4, 5, 41). The three receptors Tvb S1 (subgroups B, D, and E) (2), Tvb S3 (...