Accelerated degradation tests (ADTs) are widely used for assessing the reliability of long‐life products. During an ADT, accelerated stresses not only expedite the degradation of test products but also increase the likelihood of encountering traumatic shocks. Moreover, it is important to acknowledge that measurement errors can be inevitable during the observation process of an ADT. Unfortunately, these errors are often overlooked in the optimal design of the ADT, especially when multiple competing failure modes are present. In this article, we propose a new approach to design ADTs when measurement errors exist and test products suffer from degradation failures and random shock failures. We utilize the Wiener process to model the degradation path, incorporating normally distributed measurement errors, and an exponential distribution to fit the time between random shock failures. Given the number of test products and the termination time, we optimize the ADT plans under three common design criteria. The equivalence theorem is used to verify the optimality of the optimal ADT plans. A real‐life example and sensitivity analysis are provided to illustrate our proposed method. The results demonstrate that when competing failure modes are present, the optimal ADT plans, which account for measurement errors, differ significantly from those that do not consider such errors.