Abstract. We developed a set of simple empirically based criteria for distinguishing forest patch configurations that we expected to support persistent populations of two endemic Tapaculo species with limited dispersal ability (Chucao Tapaculos [Scelorchilus rubecula] and Black-throated Huet-huets [Pteroptochos tarnii]) in South American temperate rain forest. The criteria address sustainable population sizes (tested using population viability analysis), habitat area needed to support sustainable populations, and measures of functional connectivity derived from radiotelemetry data and patch occupancy models. We then applied the criteria in three real-world demonstration landscapes, first, to predict numbers of breeding territories potentially accommodated within patch configurations and, second, to evaluate increases that might be achieved if landscape connections among isolated patches were restored (e.g., using corridors). The best connected of the three demonstration landscapes was predicted to support large sustainable populations without intervention to restore connectivity, whereas none of the patch configurations was sustainable in the most fragmented landscape, with or without corridor restoration. Notably, however, corridor restoration in the landscape with an intermediate fragmentation level was expected to quadruple the sustainable Chucao population and potentially prevent regional Huet-huet extinction. Thus, our network criteria provide a simple approach for developing and evaluating spatially explicit prescriptions for conservation planning in this highly endangered biome. The criteria may be especially useful for discriminating among landscapes where restoration of connectivity is, or is not, an appropriate course of action.