Current human papillomavirus (HPV) DNA testing using pooled probes, although sensitive, lacks specificity in predicting the risk of high-grade cervical intraepithelial neoplasia (CIN 2/3) progression. To evaluate selected HPV genotyping, viral load, and viral integration status as potential predictive markers for CIN progression, we performed HPV genotyping in formalin-fixed, paraffin-embedded cervical tissue with cervical carcinoma (29 cases) and CINs (CIN 1, 27 cases; CIN 2, 28 cases; CIN 3, 33 cases). General HPVs were screened using consensus primers GP5 þ /GP6 þ and PGMY09/11. HPV genotyping and viral load measurement were performed using quantitative real-time PCR for eight oncogenic HPV types (16, 18, 31, 33, 35, 45, 52, and 58). HPV 16 viral integration status was evaluated by measuring HPV 16 E2/E6 ratio. We observed that HPV DNA positivity increased in parallel with the severity of CINs and carcinoma, with 59% positivity in CIN 1, 68% in CIN 2, 76% in CIN 3, and 97% in carcinoma (P trend ¼ 0.004). The eight oncogenic HPV types were significantly associated with CIN 2/3 (81%) and carcinoma (93%) (odds ratio (OR), 15.0; 95% confidence interval (CI), 5.67-39.76; Po0.0001) compared with the unknown HPV types (OR, 2.87; 95% CI, 0.89-9.22; P ¼ 0.08). HPV 16 was the predominant oncogenic HPV type in CIN 2/3 (51%) and carcinoma (71%) and integrated significantly more frequently in carcinoma than in CIN 2/3 (P ¼ 0.004). No significant differences in viral load were observed across the disease categories. Our findings suggest that selected genotyping for the eight oncogenic HPV types might be useful in separating women with a higher risk of CIN progression from those with a minimal risk. We also conclude that the HPV 16 integration status has potential to be a marker for risk assessment of CIN progression.