Streptococcus mutans, a Gram-positive facultative anaerobic bacterium, is considered to be a major etiological factor for dental caries. In this study, plaques from dental enamel surfaces of caries-active and caries-free individuals were obtained and cultivated for S. mutans isolation. Morphology examination, biochemical characterization, and polymerase chain reaction were performed to identify S. mutans. The cariogenicity of S. mutans strains isolated from clinical specimens was evaluated by testing the acidogenicity, aciduricity, extracellular polysaccharide production, and adhesion ability of the bacteria. Finally, subtractive SELEX (systematic evolution of ligands by exponential enrichment) technology targeting whole intact cells was used to screen for ssDNA aptamers specific to the strains with high cariogenicity. After nine rounds of subtractive SELEX, sufficient pool enrichment was achieved as shown by radioactive isotope analysis. The enriched pool was cloned and sequenced randomly, followed by MEME online and RNA structure software analysis of the sequences. Results from the flow cytometry indicated that aptamers H1, H16, H4, L1, L10, and H19 could discriminate highly cariogenic S. mutans strains from poorly cariogenic strains. Among these, Aptamer H19 had the strongest binding capacity with cariogenic S. mutans strains with a dissociation constant of 69.45 ± 38.53 nM. In conclusion, ssDNA aptamers specific to highly cariogenic clinical S. mutans strains were successfully obtained. These ssDNA aptamers might be used for the early diagnosis and treatment of dental caries.