Recently, with the explosion in the number of digital images captured every day in all life aspects, there is a growing demand for more detailed and visually attractive images. However, the images taken by current sensors are inevitably degraded by noise in various fields, such as medical, astrophysics, weather forecasting, etc., which contributes to impaired visual image quality. Therefore, work is needed to reduce noise by preserving the textural, information, and structural features of the image. So far, there are different techniques for reducing noise that various researchers have done. Each technique has its advantages and disadvantages. In this paper, a review of some significant work in the field of image denoising based on that the denoising methods is presented. These methods can be classified as wavelet domain, spatial domain, or both methods can combine to obtain the advantage them. After a brief discussion, the classification of image denoising techniques is explained. A comparative analysis of various image denoising methods is also performed to help researchers in the image denoising area. Besides, standard measurement parameters have been used to compute the results and to evaluate the performance of the used denoising techniques. This review paper aims to provide functional knowledge of image denoising methods in a nutshell for applications using images to provide ease for selecting the ideal strategy according to the necessity.