2020
DOI: 10.48550/arxiv.2010.07853
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Selective Classification via One-Sided Prediction

Abstract: We propose a novel method for selective classification (SC), a problem which allows a classifier to abstain from predicting some instances, thus trading off accuracy against coverage (the fraction of instances predicted). In contrast to prior gating or confidence-set based work, our proposed method optimises a collection of class-wise decoupled one-sided empirical risks, and is in essence a method for explicitly finding the largest decision sets for each class that have few false positives. This one-sided pred… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?