4‐Nitropyrazolin‐5‐ones have been synthesized by the nitration of pyrazolin‐5‐ones at room temperature by employing the Fe(NO3)3/NaNO2 system. The method demonstrated selectivity towards the 4‐position of pyrazolin‐5‐ones even in the presence of NPh and allyl substituents, which are sensitive to nitration. It was shown that other systems containing FeIII and nitrites, namely Fe(NO3)3/tBuONO, Fe(ClO4)3/NaNO2, and Fe(ClO4)3/tBuONO, were also effective. Presumably, FeIII oxidizes the nitrite (NaNO2 or tBuONO) to form the NO2 free radical, which serves as the nitrating agent for pyrazolin‐5‐ones. The synthesized 4‐nitropyrazolin‐5‐ones were discovered to be a new class of fungicides. Their in vitro activities against phytopathogenic fungi were found comparable or even superior to those of commercial fungicides (fluconazole, clotrimazole, triadimefon, and kresoxim‐methyl). These results represent a promising starting point for the development of a new type of plant protection agents that can be easily synthesized from widely available reagents.