The formation of SAPO-5 molecular sieves is studied under hydrothermal conditions in the presence of a new templating agent, 1-benzyl-2,3-dimethylimidazolium hydroxide ([bzmIm]OH). The syntheses were carried out by varying the synthesis parameters, viz. crystallization temperature, heating time and reactants molar composition (SiO2, Al2O3, P2O5, [bzmIm]+, H2O) in order to investigate the role of each synthesis parameter on the formation of SAPO-5. The results showed that these synthesis parameters had significant influences on the entire crystallization process (induction, nucleation, crystal growth, and Ostwald ripening) and physicochemical properties of SAPO-5 (morphology and crystal size). Moreover, this study also demonstrated a fast hydrothermal synthesis approach where a SAPO-5 molecular sieve with hexagonal prism morphology could be crystallized within 10 h instead of days using a novel [bzmIm]OH heterocyclic template, thus offering an alternative route for synthesizing zeolite-like materials for advanced applications.