Alkaloids occupy an important position in chemistry and pharmacology. Among the various alkaloids, berberine and coralyne of the protoberberine group, sanguinarine of the benzophenanthridine group, and aristololactam-beta-d-glucoside of the aristolochia group have potential to form molecular complexes with nucleic acid structures and have attracted recent attention for their prospective clinical and pharmacological utility. This review highlights (i) the physicochemical properties of these alkaloids under various environmental conditions, (ii) the structure and functional aspects of various forms of deoxyribonucleic acid (DNA) (B-form, Z-form, H(L)-form, protonated form, and triple helical form) and ribonucleic acid (RNA) (A-form, protonated form, and triple helical form), and (iii) the interaction of these alkaloids with various polymorphic DNA and RNA structures reported by several research groups employing various analytical techniques like absorbance, fluorescence, circular dichroism, and NMR spectroscopy; electrospray ionization mass spectrometry, thermal melting, viscosity, and DNase footprinting as well as molecular modeling and thermodynamic studies to provide detailed binding mechanism at the molecular level for structure-activity relationship. Nucleic acids binding properties of these alkaloids are interpreted in relation to their biological activity.