Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy, underscoring the need for better therapies. Adoptive immunotherapy using genetically targeted T cells represents a promising new treatment for hematologic malignancies. However, solid tumors impose additional obstacles, including the lack of suitable targets for safe systemic therapy and the need to achieve effective T cell homing to sites of disease. Because EOC undergoes transcœlomic metastasis, both of these challenges may be circumvented by T cell administration to the peritoneal cavity. In this study, we describe such an immunotherapeutic approach for EOC, in which human T cells were targeted against the extended ErbB family, using a chimeric Ag receptor named T1E28z. T1E28z was coexpressed with a chimeric cytokine receptor named 4αβ (combination termed T4), enabling the selective ex vivo expansion of engineered T cells using IL-4. Unlike control T cells, T4+ T cells from healthy donors and patients with EOC were activated by and destroyed ErbB+ EOC tumor cell lines and autologous tumor cultures. In vivo antitumor activity was demonstrated in mice bearing established luciferase-expressing SKOV-3 EOC xenografts. Tumor regression was accompanied by mild toxicity, manifested by weight loss. Although efficacy was transient, therapeutic response could be prolonged by repeated T cell administration. Furthermore, prior treatment with noncytotoxic doses of carboplatin sensitized SKOV-3 tumors to T4 immunotherapy, promoting enhanced disease regression using lower doses of T4+ T cells. By combining these approaches, we demonstrate that repeated administration of carboplatin followed by T4+ T cells achieved optimum therapeutic benefit in the absence of significant toxicity, even in mice with advanced tumor burdens.