Protein arginine methyltransferase
1 (PRMT1) is involved in many biological activities, such as gene
transcription, signal transduction, and RNA processing. Overexpression
of PRMT1 is related to cardiovascular diseases, kidney diseases, and
cancers; therefore, selective PRMT1 inhibitors serve as chemical probes
to investigate the biological function of PRMT1 and drug candidates
for disease treatment. Our previous work found trimethine cyanine
compounds that effectively inhibit PRMT1 activity. In our present
study, we systematically investigated the structure–activity
relationship of cyanine structures. A pentamethine compound, E-84
(compound 50), showed inhibition on PRMT1 at the micromolar
level and 6- to 25-fold selectivity over CARM1, PRMT5, and PRMT8.
The cellular activity suggests that compound 50 permeated
the cellular membrane, inhibited cellular PRMT1 activity, and blocked
leukemia cell proliferation. Additionally, our molecular docking study
suggested compound 50 might act by occupying the cofactor
binding site, which provided a roadmap to guide further optimization
of this lead compound.