2019 International Joint Conference on Neural Networks (IJCNN) 2019
DOI: 10.1109/ijcnn.2019.8851778
|View full text |Cite
|
Sign up to set email alerts
|

Selective Hypothesis Transfer for Lifelong Learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 31 publications
0
2
0
Order By: Relevance
“…Numerous CL algorithms have been developed in the literature (Srivastava et al, 2013;Farquhar & Gal, 2018;Kim et al, 2018;Morgado & Vasconcelos, 2019;Benavides-Prado et al, 2020;Parisi & Lomonaco, 2020;Ahn et al, 2021;Ayub & Wagner, 2021;Cha et al, 2021a;Derakhshani et al, 2021;Ehret et al, 2021;Hurtado et al, 2021;Kapoor et al, 2021;Mao et al, 2021;Tang & Matteson, 2021;Yoon et al, 2021;Benavides-Prado & Riddle, 2022;Madaan et al, 2022;Ramesh & Chaudhari, 2022;Romero et al, 2022a;Skantze & Willemsen, 2022;Wang et al, 2022b;Gaya et al, 2023;Mundt et al, 2023). On a high level, there are three principal approaches to continual learning (CL): memory-based, regularization-based and architecture-based (Pan et al, 2020;Parisi & Lomonaco, 2020;Krishnan & Balaprakash, 2021;Mehta et al, 2021;.…”
Section: Related Workmentioning
confidence: 99%
“…Numerous CL algorithms have been developed in the literature (Srivastava et al, 2013;Farquhar & Gal, 2018;Kim et al, 2018;Morgado & Vasconcelos, 2019;Benavides-Prado et al, 2020;Parisi & Lomonaco, 2020;Ahn et al, 2021;Ayub & Wagner, 2021;Cha et al, 2021a;Derakhshani et al, 2021;Ehret et al, 2021;Hurtado et al, 2021;Kapoor et al, 2021;Mao et al, 2021;Tang & Matteson, 2021;Yoon et al, 2021;Benavides-Prado & Riddle, 2022;Madaan et al, 2022;Ramesh & Chaudhari, 2022;Romero et al, 2022a;Skantze & Willemsen, 2022;Wang et al, 2022b;Gaya et al, 2023;Mundt et al, 2023). On a high level, there are three principal approaches to continual learning (CL): memory-based, regularization-based and architecture-based (Pan et al, 2020;Parisi & Lomonaco, 2020;Krishnan & Balaprakash, 2021;Mehta et al, 2021;.…”
Section: Related Workmentioning
confidence: 99%
“…This fundamental ability of lifelong machine learning systems (Silver & Poirier, 2007;Silver et al, 2013) has received very little attention. A first approximation to transferring backward explicitly was presented by us (Benavides-Prado, Koh, & Riddle, 2019). Research such as ELLA (Ruvolo & Eaton, 2013b) has approximated this problem implicitly in the context of multitask learning.…”
Section: Introductionmentioning
confidence: 99%