Studies of patients with focal brain damage suggest that topographical representation is subserved by dissociable neural subcomponents. This article offers a condensed review of the literature of ''topographical disorientation'' and describes several functional MRI studies designed to test hypotheses generated by that review. Three hypotheses are considered: (i) The parahippocampal cortex is critically involved in the acquisition of exocentric spatial information in humans; (ii) separable, posterior, dorsal, and ventral cortical regions subserve the perception and long term representation of position and identity, respectively, of landmarks; and (iii) there is a distinct area of the ventral occipitotemporal cortex that responds maximally to building stimuli and may play a role in the perception of salient landmarks. We conclude with a discussion of the inferential limitations of neuroimaging and lesion studies. It is proposed that combining these two approaches allows for inferences regarding the computational involvement of a neuroanatomical substrate in a given cognitive process although neither method can strictly support this conclusion alone.The topographical domain may be defined as that space that is beyond our immediate perceptual horizon. Topographical spaces include the interior of a building or the town in which the building is located. We routinely generate internal representations of these spaces, as well as their contents, which suffice to guide us from place to place. There are, perhaps, as many different kinds of representations as there are possible solutions to the problem of way-finding, ranging from inflexible, route-based lists of right and left turns to map-like representations that encode the metric distance relationships between landmarks (1). These representations can be cast within different spatial frames, including egocentric (bodycentered) and exocentric (world-centered) coordinates (2). There is evidence that these different types of representations can be brought to bear in combination and in isolation, depending on the features of the environment (3) and the means (4) and goals (5) of exploration. The aim of this article is to review some recent studies regarding the neural basis of these types of topographical representations.There are three primary ideas that will be presented here. All three fall under the more general proposal that distinct functional, neuroanatomical components, which normally operate in concert to provide the seamless percept of orientation, differentially contribute to the representational processes mentioned above. Each of these hypotheses are related to the performance deficits from which topographically disoriented brain-damaged patients suffer, and these hypotheses have been tested explicitly in intact subjects by using functional magnetic resonance imaging (fMRI).The first hypothesis is that the medial-temporal lobes are regionally subspecialized for the acquisition of topographic information. The hippocampus holds a privileged position (1) in ...