Conjugated polymers, such as polyfluorene and poly(phenylene vinylene), have been used to selectively disperse semiconducting single-walled carbon nanotubes (sc-sWnTs), but these polymers have limited applications in transistors and solar cells. Regioregular poly(3-alkylthiophene)s (rr-P3ATs) are the most widely used materials for organic electronics and have been observed to wrap around sWnTs. However, no sorting of sc-sWnTs has been achieved before. Here we report the application of rr-P3ATs to sort sc-sWnTs. Through rational selection of polymers, solvent and temperature, we achieved highly selective dispersion of sc-sWnTs. our approach enables direct film preparation after a simple centrifugation step. using the sorted sc-sWnTs, we fabricate high-performance sWnT network transistors with observed charge-carrier mobility as high as 12 cm 2 V − 1 s − 1 and on/off ratio of > 10 6 . our method offers a facile and a scalable route for separating sc-sWnTs and fabrication of electronic devices.