Plant RNA-DEPENDENT RNA POLYMERASE1 (RDR1) is a key component of the antiviral RNA-silencing pathway, contributing to the biogenesis of virus-derived small interfering RNAs. This enzyme also is responsible for producing virusactivated endogenous small interfering RNAs to stimulate the broad-spectrum antiviral activity through silencing host genes. The expression of RDR1 orthologs in various plants is usually induced by virus infection. However, the molecular mechanisms of activation of RDR1 expression in response to virus infection remain unknown. Here, we show that a monocot-specific microRNA, miR444, is a key factor in relaying the antiviral signaling from virus infection to OsRDR1 expression. The expression of miR444 is enhanced by infection with Rice stripe virus (RSV), and overexpression of miR444 improves rice (Oryza sativa) resistance against RSV infection accompanied by the up-regulation of OsRDR1 expression. We further show that three miR444 targets, the MIKC C -type MADS box proteins OsMADS23, OsMADS27a, and OsMADS57, form homodimers and heterodimers between them to repress the expression of OsRDR1 by directly binding to the CArG motifs of its promoter. Consequently, an increased level of miR444 diminishes the repressive roles of OsMADS23, OsMADS27a, and OsMADS57 on OsRDR1 transcription, thus activating the OsRDR1-dependent antiviral RNA-silencing pathway. We also show that overexpression of miR444-resistant OsMADS57 reduced OsRDR1 expression and rice resistance against RSV infection, and knockout of OsRDR1 reduced rice resistance against RSV infection. In conclusion, our results reveal a molecular cascade in the rice antiviral pathway in which miR444 and its MADS box targets directly control OsRDR1 transcription.RNA silencing mediated by regulatory small RNAs (microRNAs [miRNAs] and small interfering RNAs [siRNAs]) negatively regulates gene expression at the posttranscriptional level or at the transcriptional level in eukaryotic organisms. Besides small RNAs, plant RNA-silencing pathways incorporate several kinds of core protein components, such as DICER-LIKE (DCL) RNase III endonucleases, which process long doublestranded RNA (dsRNA) into small RNA duplexes; ARGONAUTEs (AGOs), the major effector of the RNA-induced silencing complexes, which bind to small RNAs for silencing target RNAs; and RNA-dependent RNA polymerases (RDRs), which are required for copying single-stranded RNAs into dsRNAs for downstream processing by DCLs. Multiple DCLs, AGOs, and RDRs have evolved in plants and thus form an array of RNA-silencing pathways (Axtell, 2013;MartĂnez de Alba et al., 2013;Bologna and Voinnet, 2014). Among them, the antiviral RNA-silencing pathway is the earliest described and most extensively studied. It is well known that the antiviral silencing pathway directly targets viral RNAs. Briefly, as in Arabidopsis (Arabidopsis thaliana), the stem-loop structures and dsRNA replication intermediates of viral RNAs are recognized and cleaved by DCLs (DCL4 and DCL2) to produce primary virus-derived small interferi...