Amyloid plaques and tau tangles are the hallmark pathologic features of Alzheimer’s disease (AD). Traditionally, these changes are identified in vivo via cerebrospinal fluid (CSF) analysis or positron emission tomography (PET) scans. However, these methods are invasive, expensive, and resource-intensive. To address these limitations, there has been ongoing research over the past decade to identify blood-based markers for AD. Despite the challenges posed by their extremely low concentrations, recent advances in mass spectrometry and immunoassay techniques have made it feasible to detect these blood markers of amyloid and tau deposition. Phosphorylated tau (p-tau) has shown greater promise in reflecting amyloid pathology as evidenced by CSF and PET positivity. Various isoforms of p-tau, distinguished by their differential phosphorylation sites, have been recognized for their ability to identify amyloid-positive individuals. Notable examples include p-tau181, p-tau217, and p-tau235. Among these, p-tau217 has emerged as a superior and reliable marker of amyloid positivity and, thus, AD in terms of accuracy of diagnosis and ability for early prognosis. In this narrative review, we aim to elucidate the utility of p-tau217 as an AD marker, exploring its underlying basis, clinical diagnostic potential, and relevance in clinical care and trials.